skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yichen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 22, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Free, publicly-accessible full text available July 22, 2026
  4. Abstract We present JWST-NIRCam narrowband, 4.05μm Brαimages of the Sgr C Hiiregion, located in the central molecular zone (CMZ) of the Galaxy. Unlike any Hiiregion in the solar vicinity, the Sgr C plasma is dominated by filamentary structure in both Brαand the radio continuum. Some bright filaments, which form a fractured arc with a radius of about 1.85 pc centered on the Sgr C star-forming molecular clump, likely trace ionization fronts. The brightest filaments form a “π-shaped” structure in the center of the Hiiregion. Fainter filaments radiate away from the surface of the Sgr C molecular cloud. The filaments are emitting optically thin free–free emission, as revealed by spectral index measurements from 1.28 GHz (MeerKAT) to 97 GHz (Atacama Large Millimeter/submillimeter Array). But, the negative in-band 1 to 2 GHz spectral index in the MeerKAT data alone reveals the presence of a nonthermal component across the entire Sgr C Hiiregion. We argue that the plasma flow in Sgr C is controlled by magnetic fields, which confine the plasma to ropelike filaments or sheets. This results in the measured nonthermal component of low-frequency radio emission plasma, as well as a plasmaβ(thermal pressure divided by magnetic pressure) below 1, even in the densest regions. We speculate that all mature Hiiregions in the CMZ, and galactic nuclei in general, evolve in a magnetically dominated, low plasmaβregime. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  5. ABSTRACT Safety analysis of power systems is concerned with the system's ability to maintain critical variables within specified limits following a disturbance. Frequency control adequacy has become increasingly important as the system inertia decreases due to the increase in renewable energy penetration. Various controllers for inverters have been proposed to improve the system frequency response and few are capable to ensure the safety of the response. In this article, a diesel‐wind energy system is considered and modeled as a switching system between normal, faulted, and post‐fault modes. A safety feedback controller is designed as a supplementary signal for a wind turbine generator such that the speed of the diesel generator stays within a permissible range in the presence of a finite energy disturbance. Numerical results on the modified 33‐bus microgrid system obtained of the proposed novel approach indicate that the suggested control configuration can guarantee adequate frequency response without excessive conservativeness. 
    more » « less
  6. Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20Mand surrounding envelope masses of ∼100M. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9Mand associated massive (∼90M) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Context. Evidence that the chemical characteristics around low- and high-mass protostars are similar has been found: notably, a variety of carbon-chain species and complex organic molecules (COMs) form around both types. On the other hand, the chemical compositions around intermediate-mass (IM) protostars (2M<m*< 8M) have not been studied with large samples. In particular, it is unclear the extent to which carbon-chain species form around them. Aims. We aim to obtain the chemical compositions of a sample of IM protostars, focusing particularly on carbon-chain species. We also aim to derive the rotational temperatures of HC5N to confirm whether carbon-chain species are formed in the warm gas around these stars. Methods. We conducted Q-band (31.5–50 GHz) line survey observations toward 11 mainly IM protostars with the Yebes 40 m radio telescope. The target protostars were selected from a subsample of the source list of the SOFIA Massive Star Formation project. Assuming local thermodynamic equilibrium, we derived the column densities of the detected molecules and the rotational temperatures of HC5N and CH3OH. Results. Nine carbon-chain species (HC3N, HC5N, C3H, C4Hlinear-H2CCC,cyclic-C3H2, CCS, C3S, and CH3CCH), three COMs (CH3OH, CH3CHO, and CH3CN), H2CCO, HNCO, and four simple sulfur-bearing species (13CS, C34S, HCS+, and H2CS) are detected. The rotational temperatures of HC5N are derived to be ~20–30 K in three IM protostars (Cepheus E, HH288, and IRAS 20293+3952). The rotational temperatures of CH3OH are derived in five IM sources and found to be similar to those of HC5N. Conclusions. The rotational temperatures of HC5N around the three IM protostars are very similar to those around low- and high-mass protostars. These results indicate that carbon-chain molecules are formed in lukewarm gas (~20–30 K) around IM protostars via the warm carbon-chain chemistry process. Thus, carbon-chain formation occurs ubiquitously in the warm gas around protostars across a wide range of stellar masses. Carbon-chain molecules and COMs coexist around most of the target IM protostars, which is similar to the situation for low- and high-mass protostars. In summary, the chemical characteristics around protostars are the same in the low-, intermediate- and high-mass regimes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. The growing adoption of residential distributed energy resources (DERs) introduces more uncertain variability in power grid operation. More importantly, the residential DERs operate behind customers’ energy meters, and therefore, the utility cannot “directly” monitor them. Prior approaches to enable visibility into behind-the-meter (BTM) DERs either depend on estimations or require intrusive instrumentation on the customer side. To address the critical need for direct real-time monitoring of BTM DERs, in this paper, we propose a novel approach for utility-side direct real-time monitoring of residential BTM DERs. We utilize high-frequency (> 10kHz) conducted electromagnetic interference (EMI) from residential DERs’ grid-tied inverters to monitor their power generation. We discuss the working principle of our approach and present supporting results using three of-the-shelf grid-tied inverters. 
    more » « less